
AD-A141 834 A TUTORIAL FOR THE RAMTEK 9460 RASTER GRAPHICS SYSTEM i/I
AND THE DI-3000 GRAPHICS PACKAGE(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA R H ELMLINGER MAR 84

UNCLASIDF/G 9/2 N

EIEEEM.II.EEoEon

..I..IEEE-hEE

11111H ILI _

1I1IIIIJIL . IN 1.6

MICROCO PY RESOLUTION TEST CHART
NANNAL BUREAU OiF STANDARDS 1963-A

f2

NAVAL POSTGRADUATE SCHOOL
Monterey, California

IJ

~JUN r 1984

THESIS
A TUTORIAL

FOR THE RAMTEK 9460 RASTER GRAPHICS SYSTEM
AND THE DI-3000 GRAPHICS PACKAGE

by

Ronald H. Elmlinger

Lag ~March 1984

Thesis Advisor: G. R. Porter

Approved for public release, distribution unlimited.

84 06 06 0939

SEC RIY CLASSFICA IO O T HIS PAGE (Whe D ele em s READ_ _ __RUC _O_ S

RORT DOCUMENTATION PAGE EFORE COMPLETING FORM

1. WEQNT 14UMIE' L GOVT eCeSsiON NO. L RECIPIENT'S CATALOG MUMDER

4. T,-zEw ,,m,0 S. TYPE OF REPORT & P6EROO COVERED

A Tutorial for the RAMTEK 9460 Raster Master's Thesis;
Graphics System and the DI-3000 Graphics March 1984
Package 4. PERFORMING ONG. REPORT NUMIER

7. AUTOMi(s) a. CONTRACT OR GRANT WUMiERS)

Ronald H. Elmlinger

S. 104110101111 ORGANIZATION $$AMR AUD ADORESR 10. PROGRAM ItEMENT.M PROJECT TASKC
APRA & WOOK UNI aUgR

Naval Postgraduate School
Monterey, California 93943

II. CONTIOLLINO OPICE NAME AND AORISS 12. REPORT DATE

Naval Postgraduate School March 1984
Monterey, California 93943 ,3. HUMMER Of PAGES

88
I4. MWITOIN AGENCY NAME S ADDRISISfi dtee Iv.. CentIMU Offi.e) IS. SECURITY CLASS. (of this repoif)

Unclassified

Is. OFCLASSICATOi/ OOW4NGRAOI OG
SCHEDULE

IS. DISTRIBUTION STATIMENT (of il. fepRere)

Approved for public release, distribution unlimited.

I1i. DISTINGUTION STATEMENT (91 .bw as mfte mIn 1ee ". It Iferent lm RePeal)

II. SUPPLIMETARY NOTES

It. KEY WORD0 (C.ne0*s ON -es. Side N "m6040 an 1~1F W 6e10k ftun w)

DI-3000, Graphics, High Resolution Graphics,
Graphics Tutorial, Ramtek

This document is a tutorial for programming with the
DI-3000 graphics software package, Ramtek 9460 graphics
hardware, and VAX 11/780 computer located in the Naval
Postgraduate School's Wargaming Analysis and Research
Laboratory.

00 0 0 C I C I o o6 O

WCUPAT CLASSFICATION OF T"IS PAGE (M 049 2Mt

For first time users, an introductory level explanation
of the functions and terminology associated with the
graphics package is presented. This document can also
serve as a departure point for programmers who wish to
make more extensive use of available capabilities.

A

mI

SN 0102- L
r -

0 14- 6601

2SECURITY CLAW.,€TION OF T.*IRP9M Dd* " E4

Approved for public release; distribution unlimited.

A Tutorial
for the RUBTEK 9460 Raster Graphics System

and the DI-3000 Graphics Package

by

Ronald H. Elmlinger
Lieutenant, United States Navy

B.S., Colorado Univers ty, 1911

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(Command, Control and Communications)

from the

NAVAL POSTGRADUATE SCHOOL
March 1984

Author:_____ ___

Approved by:

Thesis Advisor

Second Reader

Chairman, Command, Cent d municati A Group

Academic Dean

3

'ii

ABSTRACT

This document is a tutorial for programming with the
DI-3000 graphics software package, Raitek 9460 graphics
hardware, and VAX 11/780 computer located in the Naval

Postgraduate School's Wargaming Analysis and Research

Laboratory.
For first time users, an introductory level explanation

of the functions and terminology associated with the

graphics package is presented. This document can also serve
as a departure point for programmers who wish to make more

extensive use of available capabilities.

'4

i

TABLE OF CONTENTS

I. INTRODUCTION 13

A. RIMTEK AND DI-3000 RELATIONSHIP 13

B. LABORATORY EQUIPMENT OVERVIEW 14

C. RUNNING A PROGRAM 15

D. INITIALIZATION OVERVIEW 16

E. PRIMITIVES AND COMPOUND IMAGES 16

F. ABSOLUTE AND RELATIVE COORDINATES 18

G. CONVENTIONS 19

1. General 19

2. Display Coordinate Systems 19

3. Subroutines and Parameters 20

4. Current Position 20

5. Attributes 20

II. NCN-TEXT PRIMITIVES 25

A. GENERAL 25

E. MOVING THE CURRENT POSITION (JMOVE/JRMOVE) o . 26

1. Description 26
2. Use 26

3. Parameter Definition 26
4. Discussion Example 26

C. DRAWING A LINE (JDRIA/JRDRAW) 27

1. Description 27
2. Use 27

3. Parameter Definition 27

4. Required Attributes 27

5. Discussion Example 28

D. CRAWING CCVNECTED LINES (JPOLY/JRPOLY) . . o 28

1. Description 28

s

2. Use 29

3. Parameter Definition 29

4. Required Attributes 29

5. Discussion Example 29

U. DRAING AN ARC LIVE (JARC) 30

1. Description 30
2. Use 31

3. Parameter Definition 31

4. Required Attributes 31

5. Discussion Example 31

F. DRAWING & PCLYGON (JPOLGN/JRPLGN) 32

1. Description 32
2. Use 32

3. Parameter Definition 33

4. Required Attributes 33

5. Discussion Example 33

G. DRAWING A BECTANGLE (JRECT) 34

1. Description 34
2. Use 34

3. Parameter Definition 35

4. Required Attributes 35

5. Discussion 35

H. DRAWING A CIRCLE (JCIRCL) 35

1. Description 35
2. Use 35

3. Parameter Definition o 35

4. Required Attributes 36

5. Discussion Example 36

I. DRAWING A CIRCLE SECTION (JSECTR) 36

1. Description 36
2. Useo. 37

3. Parameter Definition 37

14. Discussion Example 37

6

III. ATTRIBUTES 43

A. GENERAL 43

B. DEFAULT AND CURRENT ATTRIBUTE VALUES 43

C. POLYLINE AND POLYGON ATTRIBUTE CLASSES 45

D. POLYLINE COLOR (JCOLCR/JDCOLR) o.. 45

1. Description 45

2. Use 45

3. Parameter Definition 45

4. Applicability 46

5. Initialization Default Value o 46

6. Discussion 46

E. POLYLINE STYLE (JLSTYL/JDLSTY) 47

1. Description 47

2. Use 47

3. Parater Definition 47

4. Applicability 47

5. Initialization Default Value 48

6. Discussion 48

F. POLYLINE INTENSITY (JINTEN/JDINTE) 48

1. Discussion , 48

G. POLYLINE WIDTH (JLWIDE/JDLWID) 48

1. Discussion 48

H. POLYGON EDGE COLOR STYLE (JPEDGE/JDPEDG) . . . 49

1. Description 49

2. Use 49

3. Parameter Definition .o..... . 49

4. Applicability 49

5. Initialization Default Value 49

6. Discussion 49

I. POLYGON INTERIOR STYLE (JPINTR/JDPINT) . . 50

1. Description 50
2o Use o.. 50

3. Parameter Definitions 50

7

4. Applicability 51

5. Initialization Default Value 51

6. Discussion 51

J. POLYGON INTERIOR COLOR (JPIDEX/JDPIDX) 51

1. Description 51
2. Use 51

3. Paraaeter Definitions 51

4. Applicability 52

5. Initialization Default Value 52

6. Discussion 52

K. EOLYGCN PSCGRAM EXAMPLE 53

IV. TEXT PRIMITIVES AND ATTRIBUTES 55

A. GENERAL 55

B. TEXT ATTRIBUTES 55

C. CREATING A CHARACTER STRING (JHTEXT) . . 56

1. Description 56

2. Use 56

3. Parameter Definition . . . 56

4. Required Attributes 57

5. Discussion Example 57

D. CHARACTER SIZE (JSIZE/JDSIZE) 58

1. Description 58

2. Use 58

3. Parameter Definition 59

4. Initialization Default Value59

5. Discussion 59

E. CHARACTER SPACING (JGAP/JDGAP) 59

1. Description 59

2. Use 59

3. Parameter Definitions 60

4. Initialization Default Value 60

5. Discussion 60

F. CHARACTER STRING DIBECTION (JPATH/JDPATH) . 60

8

1. Description 60 j
2. Use 61

3. Parameter Definition 61
4. Initialization Default Value 61

5. Discussion 61
G. CHARACTER STRING JUSTIFICATION

(JJUST/JDJUST) 62

1. Description 62
2. Use 62

3. Parameter Definition 62
4. Initialization Default Value 62

5. Discussion 62

H. CHARACTER STYLE (JFONT/JDFONT) 63
1. Description 63

2. Use 63

3. Parameter Definition 63

4. Initialization Default Value 63
5. Discussion 63

V. REQUIRED SUBCUTIES 69

A. GENERAL 69

B. INITIALIZATION (JBEGIN) 69

1. Description 69
2. Ufse 69

3. Discussion 69

C. SELECTING AND OPERATING RAMTEK MONITORS . . . 70
1. Discussion 70

D. DEFINING 8CNITOR UNIT PAIR NUMBER (JFILES) . 71
1. Description 71
2. Use 7 1

3. Parameter Definition 71

4. Discussion 71
E. INITIALIZATION AND SELECTION

(JDINIT/JDEVO N) 72

9

1. Description 72
2. Use 72

3. Parameter Definition.72

4. Discussion 72

F. SPECIYING COLOR 72

1. Discussion 72

G. DEFINING CCORDINATE ASPECT RATIO (JVSPLC) . . 73
1. D escr ipt ion ai.*. *73
2. Desci.io 73

3. Discussion 73

H. DEFINING WORLD COORDINATE WINDOW (JWINDO) . . 74

1. Description 74

2. Use 74

3. Parameter Definition 74

4. Discussion 74

I. SEGMENT REQUIREMENTS

1. Discussion

J. ENDING A GRAPHICS PROGRAM (JEND/END)

1. Description Ic

2. Use 75

3. Discussion 75

VI. DISPLAYING AN IMAGE 76

A. GENERAL 76

E. SEGMENTS 76

C. IMAGE OVERLAY LIMITATIONS o 77

D. CREATING A TEMPORARY SEGMENT
(JOPE1/JCLOSE) o 78

1. Discussion . o 78

2. Use 78

3. Discussion 78

E. CREATING A RETAINED SEGMENT
(JROPEN/JBCLOS) 79

1. Description 79

10

2
2. Use 79

3. Parameter Definition79

4. Discussion 79

P. MAKING SEGMENTS VISIBLE (JVISBL/JDVISB) . . . 79

1. Description 79

2. Use 80

3. Parameter Definitions 80

4. Discussion. 80

G. CLEARING THE SCREEN (JFRAME) 80

1. Description 80
2. Use 81

3. Discussion 81

H. PAUSING A EROGRAM (JPAUSE) 81

1. Description 81

2. Use 81

3. Parameter Definition81

4. Discussion 81

VII. CCNCLUSION 83

A. ADDITIONAt CAPABILITIES83

B. HELP FEATURE 84

C. SAMPLE PRCGRAMS 84

1. Suggested Thesis Topics86

LIST OF REFERENCES 87

INITIAL LISTRIBUTION LIST. 88

11

IT

LIST OF FIGURES

1.1 Typical War Lab Configuration 22

1.2 VkX Commands and Returns for Program Run . 23

1.3 Minimum Necessary DI-3000 Subroutine Calls . . . 24

2.1 Broken Line 38

2.2 Five-Sided Pclygon 39

2.3 Circles. 40

2.4 Circle Creation Program 41

2.5 Circle Secticn 42

3.1 Color Segment Program 53

3.2 Typical Polygon Creation Program54

4.1 Sentinel Statements and Output Examples 65

4.2 Character String Direction Path Example 66

4.3 Text Justification Examples 67

4.4 Graphic Precision Text Styles 68

12

I. INTRO RUT ON

1. SANTEK AND DI-3000 RELATIONSHIP

The Naval Postgraduate School's Secure Wargaming

Analysis and Research Laboratory (War Lab), located in
Ingersol Hall room IN-157, is equipped with a high resolu-

tion graphics system. This system consists of six Ramtek
GH859C cclor monitor screens, four 9460 controllers, and a

Precision visuals Incorporated DI-3000 graphics software

system as modified by Lawrence Livermore Laboratories. The

DI-3000 runs on a DEC VAX 11-780 using the VMS operating

system.

The purpose for writing this tutorial is to provide
first-time users in the War Lab with an introductory level
guide to using the Ramtek/DI-3000 graphics system, and to
serve as a departure point fcr programmers wishing to make

use of the extensive capabilities documented in Reference 1.
The facility is available for student and faculty use.

DI-3000 is a device-independent software package. This

independence theoretically enables a user to display
graphics output on any type of standard graphics device if
it is ccnnected to a DI-3000 supported computer system.
Eecause the DI-3000 system does not support all Ramtek
features, and because some DI-3000 routines do not work as

indicated in Reference 1, another purpose of this guide is
to document these differences.

The DI-3000 graphics software package is convenient and
easy to use. The only backgrcund a programmer needs is an

elementary knowledge of Fortran and the ability to create
and run a program ca the VAX 11-780. This is because
DI-3000 is merely a library of Fortran-callable subroutines.

13

An application program calls DI-3000 subroutines to generate

graphics images on one or more of the Ramtek monitors.

The remainder of this chapter provides definitions and

conventicns, and explains general system use in broad terms.

More detailed documentation is given in subsequent chapters.

B. LADCRATORT EQUIPENET OVERVIEB

The secure laboratory as typically configured is shown

in Figure 1.1. Variations to this layout occur periodi-

cally, tut of interest is the location of the six Ramtek

monitors. At present, only three unique images can be

displayed hetween tkese six monitors because of current

hardware constraints. For example, monitor pair A and B may
display an identical image, monitor pair C and D may share a
second image, and monitor pair E and F a third image. Each
user specifies withir their program the monitor pair to be

used to display their graphics output. Only three programs
can display their images on the three monitor pairs at the
same time.

By energizing just one of the monitors in a pair, for

example, A but not B, a single image will appear on A
instead of duplicates on both A and B. A further descrip-
tion of how to specify and identify monitors is found in
Chapter V.

The VT-1O0 or VI-102 terminals are the most convenient

for use in conjunction vith graphics programming. They are

equipped with edit function keys and are located near the
Ramtek mcnitor screens and the input graphic tablets. The
easiest way to get started in the laboratory is to obtain an
account on the VAX system from the War Lab Manager and
review the laboratory familiarization handout written by
LCDR McCoy. Copies of this handout are available in the War
Lab. Completing the CAI Tutorial is also helpful so that

unique features of the VAX editor can be used to create

DI-3000 Fortran programs. The CAI tutorial is an interac-

tive program found on the VAX system. Its beginning

instructions will appear on the terminal screen immediately

after log-in.

C. RHBUING A PROGRAD

After a Fortran program file is created that ccnsists of

DI-3000 subroutine calls which display a graphics image, the

file must be compiled, linked to DI-3000, then run in three

distinct steps. Assume you have created a program 'file

identified as PICTURE.FOR;5, and you wish to run the program

and display the image on a Raztek monitor. First you would

type

FOR PICTURE

This command would ccmpile your latest version Fortran file,

here number 5, named PICTURE. If compilation were
successful, the command prompt

$

would appear. If nct, errors would result. To link the

DI-3000 cperating system to your program you would next type

SLINK PICTURE

If there were no errors in your use of DI-3000, you would

again see the command prompt. Then you would run the

program by typing
RUN PICTURE

Figure 1.2 is an example of the control commands and screen

returns that will he displayed when successfully running
PICTURE.FOR;5 with no errors. Notice that there are five

compilation warnings listed. These are normal system

responses. If other than these warnings are listed, you

have generated an error condition either in your use of

DI-3000 or during the compilation and run phase of your

!ortran program.

'5

Once a program has been successfully run at least once, j
an object file is created. Any time the user would then

desire to display the image, only "running's the program

would be necessary. For our previous example, only the

command

RUN PICTURE

would be required.

D. INITILLIZATIO OVERVIEW

The fundamental DI-3000 subroutine calls define .ri -

ill objects and images such as lines, polygons, moves to a

new screen position, written text, and more. There are

three classes of primitives: PolyLnejs, Pol_.qons, and text.

rolyline primitives fcrm "open-ended" figures, while polygon

primitives form "enclcsed" ones. Text primitives generate

written character information. A more detailed description

of primitives and their applications can be found in

Chapters II, III, and IV.
Every DI-3000 program must also consist of other subrcu-

tine calls necessary for these image primitives to be

created, displayed, or terminated. For the programmer's

purposes, this means that each program must have a certain

minimum sequence of commands for it to run successfully.

Figure 1.3 is an example of a DI-3000 program harness that

will display a picture if the image primitive calls are

surrounded by the ccommands listed. These commands are a

minimum ¢f the calls a programmer can use, and provide a

good reference for the beginning user. I full explanation

cf each can be found in Chapter V.

1. PBRIITIVES AID CCSPOUID IAGES

To create, say, a polygon primitive we would call a

D1-3000 Portran subroutine, named JPOLGN, as follows:

CALL J POLGN (X, Y, N)

16

Notice the existence of subroutine parameters X,Y, . These

parameters mean the fcllowing:
X - The X coordinate positions (real array)

Y - The Y coordinate positions (real array)
N - Number of points defining a polygon (integer)

Also, notice that subroutine parameters are of varying

types (real array and integer). In accordance with Fortran
convention, this means parameters must be declared and

dimensioned correctly at the beginning of your program.

Real, integer, and array parameters are discussed further in
Paragraph G below. A complete description of the subroutine

JPOLGN can be found in Chapter II.

The degree of ccmplexity of an object being created

determines the complexity of its primitive call. Objects

such as polygons are many-sided, can have different interior

and edge colors, and different interior intensities. These

characteristics of a primitive are examples of its qttri-
butes. Notice that we did not specify the attributes of the
polygcn when we called JPOLGN above, therefore we would have

no way of knowing characteristics like what color polygon we
would create or what the interior pattern would be. we must

insure that these attributes are correctly defined. There

exist, for this purpose, attribute subroutines that are
normally invoked prior tc primitive subroutines. For
example, to insure a solid interior pattern for all subse-

quent polygons, we would include in our program the

follcving subroutine call:

CALL JPINTR(1)
This attribute subroutine and others that are commonly used
are discussed in detail in Chapter III.

Seldcm is any image created that merely consists of a
single primitive shape. Rather, most images are composites
of several primitives that build upon each other to create

the final desired picture. Most of the differences between

17

the way the DI-3000 system is supposed to work and the

actual results obtainable in the war Lab are encountered

when the programmer tries to create and display compound
image segments. & discussion of the differences, their

limitations, and ways to achieve desired outputs are

described in Chapter VI.

F. aBSOLUTE AND RILITIVE COORDINATES

CI-3000 subroutines create images for display at a

defined location on an output device. Most primitive

subroutine calls can create images based upon either abso-

or Ia elaiI coordinate positions. When an image is to
be created only once, use of either absolute or relative

positioning is appropriate depending on the user's applica-

tion and preference. But when multiple copies of an image
are desired, it would be needlessly repetitive to redefine

each prinitive image for each different position, therefore
relative referenced primitives are used. Rather than using

absolute coordinates the relative primitive creates an image

at I,! pcsitions relative to an imaginary, unseen marker on
the screen. For example, to duplicate an image you would

establish the marker, call the relative primitive, move the
marker, call the relative primitive again, and repeat this

sequence until all images were created.
Primitives of absolute and relative parameters can be

distinguished from each other by their formats. Absolute

primitives are of the form:
JXXXXX (e.g. JPOLGN)

while relative primitives are of the form:

JHXlXX (e.g. JRPLGN)

lmost every attribute and capability of both are identical,
except fcr the coordinate position differences.

I I i I • i d - ,. . I i1 8 . . .

G. CONVENTIONS

1. Gn

Throughout this tutorial, Reference 1 terminology

and fcrmat has been maintained so that the programmer can

use both documents interchangably when creating Ramtek

graphics images. Answers to questions regarding standard

VAX Portran conventicn can be found in Reference 2, located

in the War Lab.

2. isrlay Coodinate Systems

All images are referenced to a world and a virtual

coordinate system. For our purposes, we will define the
world coordinate system to be ±10.0 units in the horizontal
(X) direction, and *8.0 units in the vertical (Y) direction.

Therefore, the program grid is a rectangular display area

20.0 units wide by 16.0 units high. Except for maintaining

the height-to-width ratio of a Raatek GM859C monitor (.8 to

1.0), cur choice cf dimensions is completely arbitrary.

Whenever a primitive image is defined in our program, it

will te referenced tc our 16.0 by 20.0 unit world coordinate

grid.
We will also use the entire available Ramtek monitor

screen surface. This virtual coordinate system relative to
screen center will be a rectangular grid ±1.0 unit wide by

*.8 units high.
Cur DI-3000 program will "translate," or "map" our

world coordinate picture onto the virtual coordinate screen

by using the JVINDO command to specify world coordinate axis
values, and the JVSPAC command for virtual coordinate

values. The use of these commands is described in Chapter

V.

19

Each DI-3000 subroutine will be described in the

secticn appropriate to the image type created. Each call

will te briefly described as to function and result, and its
parameters will then be listed and defined as to meaning and
type. The correct specification for real number, integer,
and array variables within a DI-3000 Fortran prcgram

follows:

Integer--A whole number (no decimal point)

Real Number--& number with a decimal point.

rray--A group of contiguous storage locations asso-
ciated with a single symbolic name [Ref. 2]. It must be

dimensioned at the beginning of the Fortran program, and it
can be integer or real as declared.

Integers and real numbers can also be variable names

referencing integer and real numbers, respectively.

Primitives use and often modify the current Positi2n

(CP), a world coordinate point that determines a "starting

point." Unless otherwise specified, a descripticn of a
primitive subroutine call will assume the return of the CP

to its position prior to the call.

If the CP is placed outside the defined cocrdinate

area, distorted images may result when a drawing attempt
encounters a defining screen edge. In general, unless
special effects are desired, it is best to insure all

created images will "fit" on the screen.

5. jtributes

Attributes associated with a primitive subroutine

call will be listed by a~ttiute cass. Recall, primitives
are classified as pclylines, polygons, or text and their

20

IIII__ _ _ _'"_II I"__ _ _,,,__ __

attritutes are specified based upon these primitive types.
System default settings (settings that are initialized if no

attribute is specified) are also found in Chapter III.

21

12

MACHINE ROOM

E] r--- 1I M2 I

C I I

I _ _ _ _ _ ___ I

HF

I I ' I

LE

IIM -- Ramtek Monitor

T -- VTIO0/102 Terminali

M 1 A
T4 _Vacuum

- -- Door'

Front

Door .K1 I
Tigure 1.1 Typical War Lab Configuration.

22

%I %0 %a %
% m 4Iwo~

0~ ~ a a 3 4
W

- (W U En W

En E 4 E-0 C 4 E-

OOE-4 00 4 1.OW4
. r 9 .. .y n .4 *g4t

(40 mQ4M mom SQ w Q

w* wt It wt w I

NO 0 S a 4

aI~ 0 mi0- r4a

0aU2 0- Mt 04 C4 4Ho

-Hr4" -94-H2-

C PROGRAM HARNESS EXAMPLE
C

INTEGER MON
C
C INITIALIZE A RAMTEK MONITOR
C

TYPE *, 'ENTER THE MONITOR NUMBER'
ACCEPT *, MCN

C
C BEGIN MANDATORY INITIALIZATION CALLS
C

CALL JBEGIN
CALL JFILES (3, 1,MON)
CALL JDINIT (1)
CALL JDEVON 1
CALL JDCOLR 2
CALL JVSPAC -10 1 0-8 8)
CALL JWINDO -16.6.i0:0;-6:0,8.0)
CALL JROPEN 11)

C
C
C
C (INSERT YOUR PRIMITIVE CALLS HERE FOR
C IMAGE CREATION)C.I

C (ALSO, INSERT YCaR REQUIRED ATTRIBUTES
C BASED UPON ATTRIBUTE CLASS AS DESCRIBED
C IN CHAPTER III.)
C
C
C ALL PRIMITIVE CALLS INSERTED HERE ARE
C WITHIN OPEN RETAINED SEGMENT NUMBER 1.
C

CALL JRCLOS
CALL JPAUSE (1)
CALL JEND
END

C THIS PROGRAM DRAWS IN DEFAULT GREEN AND USES A
C RETAINED SEGMENT (NUMBER 1)
C

Figure 1.3 inimum Necessary DI-3000 Subroutine Calls.

24

II. NON-TEXT PRIMITIVES

A. GENERAL

Primitive routines are used by the programmer to
describe objects. Character-based objects (text) and

graphics objects (non-text) are the two most common primi-

tive types. They are distinguished not only by the images

they create, but by how they are specified and used. This

chapter describes non-text primitives. Chapter IV provides

details to display text.
As discussed in Chapter I, DI-3000 non-text primitives

often define images in one of two ways. A figure can be

defined using absolute world coordinate position values, or

it can ke expressed in world coordinate position values

relative to the current position (CP). First some elemen-
tary primitive subrcutine calls will be described followed

by examples that will illustrate the difference between

absolute and relative expressions.

All primitives will be created based upon the most

recent attribute definitions. For example, if we specify

line color to be blue, then all lines, figures, and text

will be drawn in blue. If we wish to draw a blue line and

then a red line, we must set the line color attribute to

blue, draw the blue line, change the line color attribute to

red, then draw the red line.
Non-text primitives and their attributes are grouped

into two major classes: pol ine and polqon. Their

differences are described in Chapter III.

25

I

B. MOVING THE CURRENT POSITION (JKOVE/JRKOVE)

1. Cescription

JMOVE/JRMOVE are the subroutines used to move an

invisible reference point from the current position to a new
current position. The commands establish a reference
position.

2. Use

CALL JMOVE(X,Y) (Absolute)

or

CALL JRMOVE(DX,DY) (Relative)

3. Parameter Definition

XY (Real)

The world coordinate position that will become the
new current position.

DX,DY (Real)
The amount cf displacement from the previous posi-

tion to the new current position.

4. Discussion Example

If the current position is at world coordinate posi-
tion (1.0,2.0), and we want to establish a new CP at

(3.0,7.0) we would use either of the following subroutine
calls:

CALL JMOVE(3.0,7.0)

or

CALL JRMOVE(2.0,5.0)

Note that the relative call JRMOVE merely As its

parameter values to the current position. For example,

1.0+2.0=3.0 and 2.0+5.0=7.0 results in the new X,Y world

coordinates of (3.0,7.0). The absolute call JMOVE changes

position directly to its parameter values.

26

Current position can be moved to X,Y coordinates

outside the specified viewport (for example, X>10.0 or

Y>8.0). This technique is often useful for creating unusual

images such as "gradual" arcs of large radius, but distor-

tion will result when the created shape reaches the viewport

boundary.

C. DRAWING I LINE (JDRAW/JRDRAW)

1.Descrip~tion

JDRAW/JRDRAW are the subroutines used to draw a

visitle line from the current position to a new current

position.

2. Use

CALL JDRAW(X,Y) (Absolute)

or

CALL JRDRAW(DX,DY) (Relative)

3. Falameter Definition

X,Y (Real)

The world ccordinate position that will become the

new current position. A line is drawn from the old current

positicn to this new CP.
DX,DY (Real)

The amount of displacement from the previous current

positicn to the new current position. A line is drawn from

the old CP to this new CP.

4. Resuire Attlibutes

Polyline class.

27

5. ~jcslionExml

If the current position is at world coordinate posi-

tion (-1.0,-4.0) and we want to draw a line from there to

new position (2.0,0.0), then to a third and final position

(5.0,-2.0) we could use either of the following subroutine

call sequences:

CALL JDRAW(2.0,0.0)

CALL JDRAW(5.0,-2.0)

or

CALL JRDRAW(3.0,4.0)

CALL J RDRAW (3. 0, -2. 0)

Any correct combination of absolute and relative

calls could also have been used. For example:

CALL JDRAW(2.0,0.0)

CALL JBDRAW(3.0,-2.0)

Figure 2.1 shows the picture that would result from

any of the above three call sequences.

The attributes of the line would correspond to thcse

attributes already established prior to invoking the

JDR&W/JRrRAW primitives.

Note that a color attribute must be specified by

using -he JCOLOR/JDCOLR routines as described in Chapter

III.
CP is changed to the final X,Y coordinate position

cf the drawn line.

D. DRAWING CONNECTED LINES (JPOLY/JRPOLY)

1. Description

JPOLY/JRPOLY are the subroutines used to draw a

connected sequence of visible lines, known as a polyline

segment.
Note: the sutroutines do no. create polyons.

28

2. L

CALL JPOLY(XY,N) (Absolute)

or

CALL JREOLY(DXDY,N) (Relative)

I,! (Real, Array)

The arrays ccntain the absolute world coordinate

positions that define the points of the polyline.

DXDY (Real, Array)

The arrays ccntain the relative amount of displace-

ment frcu the previous polyline point to the next point that

defines the polyline.
N (Integer)

The number of points in the polyline segment (not to
include the first current position point).

The above arrays must be dimensioned to at least the
value of N.

4. Requirled Attributes

Polyline class.

5. Discussion Example

Polylines and polygons differ in that polygons are

always enclosed figures. Polygons are also "filled" in
color and will be described later in this chapter.

Pclylines are created using a single JPOLY/JRPCLY

subroutine call rather than a sequence of JDRAW/JRDRAW calls

as before.

Once again we will create the image shown in Figure

2.1, but this time cnly a single subroutine will be needed.
Notice, though, that now the defining polyline coordinate

pairs are held in aray variables. Also note that the

29

initial Folyline position is defined as the current posi-

tion, (-1.0,-4.0) again, and is not included in the array

variable coordinate pairs. Either of the following subrou-
tines will define the required connected line:

CALL JPOLY(X,Y,2)

where I and Y are both two element arrays with the

following values:

X (1)=2.0 Y (1)=0.0

X (2) =5.0 Y (2) =-2.0

or
CALL JRPOLY(DX,DY,2)

where DX and DY are both two-element arrays with the

following values:

DX(1) =3.0 DY(1)=4.0

DI (2) =3.0 DY(2)=-2.0

The above arrays must be dimensioned in the calling

program in accordance with standard Fortran. For example:

DIMENSION X(2),Y (2) ,DX(2) ,DY(2)

or

REAL X(2),Y(2),DX(2) ,DY(2)
The N variable is defined as the dimension of the

1,1 or DX,D! arrays. Every sequence of lines consists of a

beginning point, a series of "breaking" points, and an end

point. The beginning point is the current position and is

not included in the array variables. All other coordinate
pairs are included.

CP is changed to the last X,Y coordinate polyline

point.

1. DRAVING AN ABC LINE (JARC)

1. P2scritin

JARc is the subroutine used to draw an arc of a

circle. An arc line is drawn counterclockwise from one

30

angle position to another, with a specified radius, from a
specified invisible circle center.

2. Use

CALL J&RCIX,Y,O.O,RkDIS,NSEG,A0,k1)

I'
X,Y (Real)

The world coordinate center of the circle from which

the arc is to be drawn.

0.0 (The real number zero)

RADIUS (Real)
The radius of the arc in world coordinates.

NSEG (Integer)
The number cf line segments to be used in drawing

the arc. If NSEG<1 the arc will be smooth because the
maximum number of segments possible will be used to draw a
smooth curve. If NSEG>=1 then the arc will be drawn with

NSEG flat, straight lines.

A0,A 1 (Real)
The angles in degrees defining the span of the arc.

Positive angles are measured counterclockwise from the posi-
tive X axis of the world coordinate system. Arc lines are
drawn counterclockwise from angle kO to Al.

4. Rjquired Atributes

Polyline class.

5. Discussion 3xample

The JARC and JSECTR subroutines are very similar,
and care must be taken to avoid confusing them. JARC does
not draw a filled wedge, but merely defines a section of
circle edge (the outside arc). If a "pie shaped" wedge is
desired, then the subroutine JSECTR is used.

31

If a 360 degree circle is desired, then parameters

AO and Al can be specified close enough together so that any

space between them will not appear on the screen. Their

values will be wcrld coordinate dependent. An easier way to

create a circle is to use the JCIRCL subroutine and specify

"no polygon fill" as described later in this chapter.

Note that an arc should lie within the already

defined wcrld coordinate window if it is to be drawn undis-

torted. This means that very large, gradual arcs cannot be

created simply by defining a center far away from the image

("off the screen"). Though the large arc will have the

correct shape through its curvature, if it exceeds the world

coordinate viewing area it will distort at the boundary

edge. The technique of Zivinq _/nsformation should be

used to avoid this distortion, an explanation of which can

be found in Chapter 1.

1. DRAVING A POLYGON (JPOLGN/JEPLG)

1. Descritton

JPOLGN/JBPLGN are the subroutines used to draw

filled or unfilled pclygons. All defined points and the CP
are ccnnected to form an nclgsegd figure. This is accom-

plished by an "implicit" final draw from the last specified

point in the polygon to the initial polygon creation point

(CP) . The image can be filled with a color and pattern as

described in Chapter III.

Note that the subroutines can create polylines if

the "no fill" attribute is specified, but unlike polylines,

polygons will always define an enclosed figure.

2. use

CALL JPCLGN(X,Y,N) (Absolute)

or
CALL JRPLGN(DX,DY,N) (Relative)

32

3. Lj eilr ef(inition

XoY (Real, Array)

The arrays of world coordinate absolute positicns

that define the points of the polygon.
DXDY (Real, Array)

The arrays cf displacement from the previous posi-

tion to the points that define the polygon.
N (Integer)

The number of points in the polygon. The above

arrays must be dimensioned by at least the value of N.

4. _RequiredAt ;ige

Pclygon class.

5. pi.cusion 1jample

A polygon is defined as a move from the current

positicn to the first point (as specified by the array vari-

ables 1(1),Y(1) or DX(1),DY(1)), draws to the remaining

array points, and a final im ct draw from the last point
back tc the first point.

Assume we wish to draw the five sided polygon shown

in Figure 2.2. Let current position be given initially as
the absolute world coordinate position (1.0,2.0). Either of

the following subroutines will create the polygon.

CALL JPOLGN(XY,5)
where X and Y are both five element arrays with the

following values:
X (l) =2. 0 Y(1) --3. 0

X (2) =3.0 Y (2) =4.0

1 (3) =5.0 Y (3) =5.0

1 (4) =6.0 Y(4)-3.0

X (5) -4. 0 !'(5)=1.0
or

CALL JRPLGN(DX, DY,5)

33

where DX and DY are both five element arrays with

the follcwing values:

DX(1)=1. 0 DY(1)=I.O

DX (2)=1.0 DY(2)=1.0

DI(3) =2.0 DY(3)=I.O

DX (4) =1.0 DY(4)=-2.0

DX (5) =-2.0 DY(5)=-2.0

Notice that relative array values merely add to the

previous position value to create a new coordinate position.

When JPOLGN is finished, the current position (CP)

is set to the value of X(1),Y(1), the first point, but

JRPLGN returns the initial CP.

Pclygons can be convex or concave. Their defining

points can create intersecting lines, but the created shape

will not correctly "fill" in most of those cases. Polygons

must have at least three points.
Note that absolute polySon routines do not use the

CP at all. They require 1,Y array specification of all

points. Pclyxine routines use the CP as their first pcint,

and do nct include it in their X,Y arrays.

G. D AWING A RECTANGLE (JEECT)

1. ejacription

JRECT is the subroutine used to draw a horizontal/

vertical rectangular polygon. It is an easier subroutine to
use than JPOLGN because only two X,Y position pair variables

are required; the diagonally opposite corners of the

rectangle.

2. _

CALL JRBCT(XO,YO,XI,Y)

34

3. ZAIMISt_r 21ntog

X100 (Real)

One corner of the rectangle.
X1,Y1 (Real)

The diagonally opposite corner of the rectangle.

Polygon class.

5. Dicuso~n

JRECT is included in this text as an effort-saving
subroutine for creating horizontal/vertical rectangles.
Note that the variables are not arrays, but merely values.

Also, there is no counterpart subroutine with opposite

corners defined relative to the CP. If more than one iden-
tical rectangle is required, the JRPLGN subroutine must be

used.

H. DRAING A CIRCLE (JCIRCL)

1. D2_crprion

JCIRCL is the subroutine used to draw a circular

polygon. The created shape is connected to form an enclosed
figure. The image can be filled with color and pattern.
Outlined circles can be created if no fill is specified.

2.us

CALL JCIBCL(XO,Y0,0.0,RADIUS,NSEG)

3. Paraumete Dfnitio

104O0 (Real)

The center position of the circle in world
coordinates.

35

0.0 (The real number zero)

RADIUS (Real)

The radius of the circle.
NSEG (Integer)

The number of line segments to be used when drawing
the circle. If NSEG<3 a smooth edged circle will be

created. If NSEG>=3, the outer edge of the circle will be

drawn with NSEG flat, straight lines.
4. les uired Attributes

Pclygon class.

Figure 2.3 shows examples of figures that can be

created using the JCIRCL subroutine. The program segment
shown in Figure 2.4 was used to create Figure 2.3. Notice

that triangles, squares, and any N-sided figure can be
formed by altering the value of parameter NSEG. All images

are oriented towards the I axis. For example, the first

triangle tip lies on the axis at point (RADIUS,0.).
Alsc note that a smooth circle was formed by setting

ISEG=1, and that all the examples were drawn using the same

center pcint and with the "no fill" attribute specified.
For creation of circle portions, like "pie slices"

of a circular polygon, refer to the JSECTR subroutine. For
simple partial arc lines refer to the JARC subroutine.

I. DRAWING A CIRCLE SECTION (JSECTR)

1. ascrptin

JSECTR is the subroutine used to draw a section of a

circular polygon. This shape is often used in the creation

cf "pie charts",, where part of a filled circle is needed.

36

2. Use

CALL JSECTR(XOY0,O0.,RADIUS,NSEG,A0,A)

3. Jaametr De fniti.2

X0,Y0 (Real)

The world coordinate center of the circle from which

the section is to be drawn.
0.0 (The real number zero)

RADIUS (Real)

The radius of the circle section.
NSEG (Integer)

The number of line .segments to be used when drawing
the outer arc portion of the section. If NSEG<l a smooth

edge will be created. If NSEG>=l, the outer arc will be
defined using NSEG flat, straight lines.

AO,A1 (Real)

The angles, in degrees, defining the span of the
section. Positive angles are measured counterclockwise from
the positive X axis of the world coordinate system.
Sections are created counterclockwise from AO to Al.

4. Discussion Example

For complete 360 degree circles refer to the JCIRCL
subroutine. For simple unfilled arc lines refer to the JARC

subroutine.

Figure 2.5 is an example of a circle section created
by the following subroutine call:

CALL JSECTR(1.0,2.0,0.0,3.0,1,10.0,50.0)

37

I

-~ I

I I

1 -

II I
I I
I I ~
I I ~

I IiI I'-I Ic.~
LI

S

I me

I I
I I

II VI .
I 4

Ii

I 39

....................

I Io
I I

I 40

CI
C

CALL JCIRC (0.,0. 0.).,

CILL JCICL o..o..o. 5.5,81
C ALL JCIRCL (0. ,0 O3.5 5)
CALL JCIRCL (0. ,0. 0:2.5,4
CALL JCIRCL(O.,O. 0.,1.5,31

CC
CI

Figure 2.4 Circle Creation Program.

41

I

F
I
I

1 1

II IA
0I
c0

LI
HI U

H

0I'
I I
9 1

42

A. GENEBAL

Attributes define primitive image characteristics.

Examples of attributes are "continuous" vs "dashed" lines,
or even color itself. There are many different attributes

possible, and they are all set using DI-3000 subroutine

calls. The specifications described in this chapter will

primarily apply to non-text primitives, but in several

instances both text and non-text will share the same call.

Text-cnly attributes are discussed in Chapter IV.

B. DEPAULT AND CURRENT ATTRIBUTE VALUES

Each primitive attribute has one of two values, a

default value and a current value. The default value is set

automatically when DI-3000 is initialized (with the required
JBEGIN subroutine), and remains in effect unless changed

before the first program segment has been opened.

A program seqenDt is a program section and a graphics

data structure. It contains a sequence of primitive calls

that create a graphics sub-image of logically related

objects, and is always used when creating images. Breaking

down a ccmplex picture into program segments simplifies the
creation procedure and aids understanding. It is required

in all DI-3000 programs. A detailed discussion of

segmenting can be found in Chapter VI, but for our purposes
the fcllcwing brief example should suffice.

Assume a programmer wishes to draw a green square in the

upper right-hand portion of the screen, and a red semicircle
in the center. One method for accomplishing this would be

to create a segment for each primitive image.

43

Let segment number one be for a square, and segment

number two for a semicircle. As discussed in Chapter II we

would use the appropriate subroutine calls for these image

primitives within each created segment. But, so far we have

not explained how to specify different image colors using

DI-3000 attributes.

Cne method would be as follows. Set the default color

to green, begin (open) the first segment, create and display

the square, and end (close) the first segment. Then, change
the default color to red, open the second segment, create

and display the semicircle, and close the second segment.

This method would not work because DI-3000 does not permit

changing the default color once the first segment has been

opened. Therefore, we would have to change the current

attribute color "within" the second segment to red.
Any further segments would again be drawn in default

color green, unless the current color attribute was changed
within tkem. A program excerpt that creates our example is

shown in Figure 3.1

Default values are usually set by the programmer to the
most ccmmon image attribute. If a complex picture will be

predominantly of one color, then that default color will be

set. Only images of different colors will need to be speci-

fied later using the current color attribute calls within

segments.

most default attributes are automatically set to their
most ccmmon values when a DI-3000 program is begun and are

usually not changed. These initial, automatic settings are

listed in the description of each attribute call.

Default and commcn attribute value subroutine calls can
he distinguished from each cther by their format. Default

attributes are set using the form:

JDXXXX (e.g. JDCOLR)

Current attribute calls are of the form:

JXXXXX (e.g. JCOLOR)

4I4

Current attribute values can be changed as often as

necessary within segments.

C. POLYLIUE AND POLYGON ATTRIBUTE CLASSES

Non-text attributes apply to either polygon or polyline

primitive images and are classified as such. As described

in Chapter II, polygon images always result in the creation

of an enclosed figure, while polyline images do not

necessarily.

Throughout this chapter, a detailed description of the
polyline class will first be given, followed by the polygon

class. Attribute characteristics are listed by these two

classes in the primitive descriptions in Chapter II.

Therefore, a programmer can first refer to the discussicn in
Chapter II of the image to be created, then cross-reference
to this chapter by attribute class for methods that will

specify image characteristics.

D. POLYLINE COLOR (JCOLOR/JDCOLB)

1. Desriptio

JCCLOR/JDCOLB are the subroutines used to set the

current/default polyline primitive color attribute.

2. Use

CALL JCOLOR(CVALUE) (Current)

or

CALL JDCOLE(DVALUE) (Default)

3. lflAuEte r 2efin~tigm

CVALUE (Integer)

The color index of subsequent primitives within the

currently open segment. (OCVALUE<_8)

DVALUE (Integer)

45

The new value for the default color index. When a

segment is opened, the color index is set to DVALUE.

(O :DVALUE:58)
il~4 " Elicab- t

Applies to draws, polylines, polygon edges, and text

primitives.

5. 12t:i jij;_S Default Value

DVALUE=0 (Background color)

6. Discussion

The following eight entries in the color lookup

table are downloaded to the graphics processor by setting

CVALUE/DVALUE to any cf the following integer values:
0 -- Background (No color)

1 -- Red

2 -- Green

3 -- Yellow

4 -- Magenta (Dark Blue)

5 - Pur ple

6 -- Cyan (Light Blue)

7 -- White

8 -- Background complement (White also)

JDCOLR at prcgram beginning or JCOLOR within each

segment jsjs be specified. If not, no image will appear,
because JDCOLR initialization default value is 0 and primi-

tives will be drawn in background color.

The default entries in the color table are limited

as ".4scribed (at present). Ramtek is capable of creating

many different colors (any hue, lightness, or saturation

desired), but for simplicity in this tutorial a discussion

cf how to accomplish this is not included. For further

information, refer to the Reference 1 description of

46

K

subroutine JCOTBL (creating a color table).
(0-CVALUE/DVALUE<32767) is the actual range of permissible
values, but to utilize any value >8 your color table must
first be defined. If this definition is not done, the
colors called by values >8 will be unpredictable.

E. POLYLINE STYLE (JLSTTL/JDLSTY)

JLSTYL/JDLSTY are the subroutines used to set the

current/default polyline primitive line style attribute.

Lines can be continucus or a combination of varying lengths
of "dotted" or "dashed," portions.

2. Use

CALL JLSTYL(CVALUE) (Current)

or
CALL JDLSTY(DVALUE) (Default)

3. Parameter Definition

CVALUR (Integer)

The line style of subsequent primitives within the

currently open segment. (0<:CVALUE_<32767)
DVALUE (Integer)

The new value for the default line style. When a

segment is opened, the line style is reset to DVALUE.

(ODVALUV53 2767)

4- Apliclabiily

Applies to pclyline primitives only. Does nor apply
to pclygon edges, or any text.

47

5. _njiaj.i Def__a ul__t Va

DVALUE-O (Solid line)

6. Discussion

The Rantek provides a multitude of different line

styles. As CVALUE/DVALUE values are increased the spacing
between "dots" and "dashes" increases, as does their length

and sequence. Every value that is a multiple of 8 will

result in a solid line, with a new combination of styles to
follow. It is best to experiment with available values to
find the exact desired line style, but in general a value of

CVALUE/DVALUE=7 gives a good "dotted" line that is easily
distinguishable frou normal "solid" lines.

P. POLYLIE INTENSITY (JINTEN/JDINTE)

1. Discussion

JINTEN/JDINTE do not alter line intensity as

described in Reference 1. To vary intensity, a color table

must be created.

G. POLYLINE WIDTH (JLVIDE/JDLUID)

1. Discussion

JLWIDE/JDLWID do not alter line width as described

in Reference 1. To vary line width, the JWINDO command must

be used to "blow us" or "shrink" image size by changing

world ccordinate size. This technique is explained in

Chapter V.

48

H. POLYGON EDGE COLCE STYLE (JPEDGE/JDPEDG)

1. ptcjpion

JPEDGE/JDPEDG are the subroutines used to set the

current/default polygon edge (border) color style. Edge

color style is of two types: "same as" or "different than"

polygon interior colcr.

2. Use

CALL JPEDGE(CVALUE) (Current)

or

CALL JCEEDG(DVALUE) (Default)

3. rameer D enitio

CVALUE (Integer)

The polygon edge color style of subsequent polygcns

within tle currently cpen segment. (O-<CVALUE-32767)

DVALUE (Integer)

The new value for the default polygon edge color

style. When a segment is opened, the edge style is reset to

DYALUE. (O!_DVALUE!_32767)

a. jaalicajjji _j

Applies only to polygon primitives.

5. Injia_ic.jn D__Aul Valu

DVALDE=O (Border Visible)

6. Discusion

Polygons are drawn with their borders either of the

same color as their interiors, or of different colors. If

the same color is specified, the border will be invisible.

If not, the border will form an edge of different color

around the polygon.

49

The following CVALUE/DVALUE values are used to

specify edge style:
Odd -- Invisible border.

'Even-- Border visible.

The polygon edge takes on the characteristics of

current color when visible. Therefore, polyline attribute

JCOLCR/JDCOLR determines polygon edge color in the "Even"

style.

I. POLYGC INTERIOR STYLE (JPINTR/JDPINT)

JPINTR/JDPINT are the subroutines used to set the

current/default polygon interior style attribute. Interior

style is either "empty" (no fill, background color) , or

"filled" (using an interior color as specified by the

JPIDEX/JDPIDX subroutine calls).

2. Use

CALL JPINTR(CVALUE) (Current)

or
CALL JDPINT(DVALUE) (Default)

3. 11ama~!er W~qinitin s

CV&LUE (Integer)

The polygon interior style of subsequent polygons

within the currently open segment. (CVALUE= 0 or I)
DVALJE (Integer)

The new value for the default polygon interior

style. When a segment is opened, the interior style is

reset to DVALUE. (DVALUE- 0 or 1)

50

Applies only to polygon primitives.

5. !njtiajizatjSR 2eja ult Value

DVALUE-O (No polygon fill)

6. Dilc_sion

Fully connected lines can be created by specifying

the "no fill" polygcn attribute. When polygon fill is

desired, the color of the fill is determined by using the

JPIDEX/JDPICX subroutines as next described in this chapter.

Note that JCOLCR/JDCOLR do not determine polygon interior

color.

J. POLYGON INTERIOR COLOR (JPIDEI/JDPIDX)

1. Description

JPIDEX/JDPIDX are the subroutines used to set the

current/default Folygcn interior color.

2. Use

CALL JPIDEX(CCOLOB,O) (Current)

or

CALL JDEIDX(DCOLOB,O) (Default)

3. Paraetjr 2efinitions

CCOLOR (Integer)

The polygon interior color of subsequent polygons

within the currently cpen segment. (O<CCOLOR_8)

DCOLOR (Integer)

The new value for the default polygon interior

color. When a segment is opened, the interior color is

reset to DCOLOR. (O-DCOLOR<-8)

0 (Integer number zero)

51

Polygon interior style cannot be specified as

described in Reference 1. Therefore, a "0" is used here as

a placehclder only. All interiors can be "solid" filled or

empty. Hatching is not supported.

Applies only to polygon primitives.

5. Init lizaticn Default Value

DCOLO1=0 (No interior color)

6. Discussion

Polygon interior color applies only to polygons

whose interiors have been specified as "filled" using the

JPINTE/JrPINT subroutines with value one. Interior color is

not specified using the JCOLOR/JDCOLR subroutines.

The following color index table is applicable to the

Ramtek monitors by setting CCOLOR/DCOLOR to the integer
values:

0 -- Background (No color)

1 -- Red

2 -- Green

3 - Yellow

4- Magenta (Dark Blue)

5 -- Purple

6 -- Cyan (Light Blue)

7 -- White

8 -- Background complement (White also)

Additional cclors may be specified by referring to

the Reference 1 description of JCOTBL (creating a color

table). (0_CCOLOR/DCOLOR<32767) is the actual range of

permissitle values, but to utilize values >8 your color

table must first be defined. If this definition is not

done, the colors called by values >8 will be unpredictable.

52

K. ECLYGOU PROGRAM EXAMPLE

Figure 3.2 is a complete program that draws a polygon

with red interior and yellow border.

C
C
C
C AT THE BEGINNING OF THE PROGRAM (BEFORE THE FIRST
C SEGMENT IS OPENID) DEFAULT COLOR IS SET TO GREEN.
C

CALL JDCOLR (2)

C
C
C OPEN SEGMENT ONE FOR THE GREEN SQUARE, CREATE IT,
C TEEN CLOSE SEGMENT ONE.
C
C

CALL JRCPEN 1)
CALL JMOVE (.,4.)
CALL JDRAW (6.,4.)
CALL JDRAW (6.,5.)
CALL JDRAW (5.5.)
CALL JDRAW (5.,4:.)
CALL JRCLOS

C
C
C OPEN SEGMENT TiC FOR THE RED SEMI-CIRCLE.
C NOTE THAT CURRENT COLOR ATTRIBUTE IS CHANGED
C WITHIN SEGMENT TWO TO RED. CREATE THE RED
C CIRCLE, THEN CLCSE SEGMENT TWO.
C

CALL JROPEN 121
CALL JCOLOR (1)
CALL JARC(O.,O.,O..2.,O,O.,180.)
CALL JRCLOSC

C
C

Figure 3.1 Color Segment Program.

53

p

C THIS PROGRAM WILL CREATE A FIVE-SIDED POLYGON AND
C rISELAY IT WITH A RED INTERIOR AND YELLOW EDGE.
C
C INITIALIZE THE PROGRAM. DECLARE VARIABLES, AND
C ASSIGN VALUES TC NECESSARY ARRAYS.
C C INTEGER MON

REAL PO SITXP(5,OSITY(51
DATA POSITX /:,2. 5,-2.5,-6.5.7./
DATA POSITY /6.,0. -6.

C INITIALIZE THE RAMTEK MONITOR AND COMMENCE MANDATORY
C DI-3000 INITIALIZATION SUBROUTINES.

IC
tYPE 'ENTER THE MONITOR NUMBER'
ACCEPT * MCN
CALL JBEtIN
CALL JFILES 131,MON)CALL JDINIT ! 1

CALL JDEVON 1
CALL JDCOLR !SET DEFAULT COLOR YELLOW FOR ALL!POLYLINES AND THE POLYGON EDGE.CALL JVSPACI[, ._ aCALL JWINDO .,i 18.)

C
C OPEN SEGMENT ONE AND DRAW THE POLYGON.
C CALL JROPEN (11

CALL JPIDE (10) !SET INTERIOR COLOR TO RED.
CALL JPINTR (1 !FILL VICE NO-FILL.
CALL JPEDGE(2 !SET EDGE STYLE EVEN SO!IT WILL BE VISIBLE AND WILL!DRAW USING JDCOLOR DEFAULT

!COLOR YELLOW.CALL JPOLGN(POSITX,POSITY,5) !CREATE AND DRAW
!THE POLYGON.

CALL JRCLOS !CLOSE SEGMENT ONE.C

C PAUSE THE PROGRAM SO THE IMAGE WILL REMAIN ON THE
C SCREEN, THEN END THE PROGRAM.C
CI
I CALL JPAUSE (1)

CALL JEND
ENDC

Figure 3.2 Typical Polygon Creation Prograa.

54

Ui

IV. TEX2 PRjMTIVES AND ATTRIBUTES

A. GENEBAL

Written text can be displayed on the Ramtek monitors.

Subroutine calls exist that create these character primi-

tives and ccntrol text attributes such as orientation, size,

and type.

DI-3000 supports four different levels of text p.reci-
sion. This tutorial will describe the highest level, known

as graphic arts precision text. Each character in a graphic

arts string is "stroke generated" by DI-3000 software,

resulting in the highest possible quality of text, rather
than using any hardware character generator. Learning how

to create graphic arts text is no more difficult than
learning hcw to create the lower quality types because all

text attributes apply universally.

If a programmer is concerned with transmitting a
graphics program over low bandwidth communications lines,

then high quality text creation may be excessively slow. In
this case, refer to Reference 1 for a description of lower

level text using the JITEXT, J2TEXT, and J3TEXT commands.

Text primitives are only defined at absolute positions.

There are no corresponding relative subroutine primitive

calls.

B. TEXT ATTRIBUTES

As with non-text attributes, text attributes have either

defult cr current values. Default values must be specified

prior tc the opening of the first segment, and current
values can only be changed while a segment is open (within a

segment). For a more detailed discussion refer to Chapter

III.

55

All text attributes apply only to text primitives. One

non-text attribute applies to text: the polyline color

command (JCOLOR/JDCCLR). A description of these color

subroutine calls can be found in Chapter III.

All text attributes have initialization default values.

In all but cne case, these values are such that text attri-

butes need not be changed because legible, normal characters

are output. Only the character size attribute

(JSIZE/JDSIZE) must be specified. Without its modification,

the text will be much too small to be readable since size is

specified in terms of world coordinate window. The 16.0 by

20.0 ccnvention chosen for the examples in this tutorial

makes this size change necessary.

C. CREATING A CHARACTER STRING (JHTEXT)

1. Description

JHTEXT is the subroutine used to output a graphic

arts quality text string.

2. Use

CALL JHTEXT(NCHARSSTRING)

3. Parameter Definition

NCHARS (Integer)

The number cf characters in the text string.

(0<=NCHARS<=255) .

STRING (Integer, Hollerith Input String)

The actual, literal character string to be output.

For example, a STRING value of 18HTHIS IS AN EXAMPLE would

output THIS IS AN EXAMPLE on the monitor screen.

Note -- STRING must be an Integer type variable. If

your program uses CHARACTER* variable types, they must be

converted tc integer before using them as parameters in this

JHTEXT subroutine call.

56

STRING can also contain "sentinel" characters as

discussed below for changing to upper or lower case, under-

lining, or other special functions.

An example of the complete JHTEXT subroutine call

that would output the letters THIS IS AN EXAMPLE follows:

CALL JHTEXT(18,18HTHIS IS AN EXAMPLE)

4. uir ed Attributes

All text class attributes and the non-text polyline

color attribute JCOLCE/JDCOLR apply.

5. D iscussion Example

Characters are drawn in current polyline color as

defined either by JCOLOR or JDCOLR. Refer to Chapter III

for a description of these attributes.

If increased space between, or overlap of, charac-

ters is desired refer to the gap attribute (JGAP/JDGAP).
Simple block letters are created with the initial

default. If more artistic styles are desired, refer to the

font attribute (JFONI/JDFONT).

Initial character size will be too small to be

legible using the ncrmal size attribute default and the

window of 16.0 by 20.0 chosen for this tutorial. Therefore,

the JSIZE or JDSIZE subroutines must be used prior to

writing any text unless very small world coordinate window

size is chosen.

Character string direction will be "left-to-right"
unless specified differently by changing the path attribute

(JPATH/JDPATH). Various angle orientations can also be

specified by using the character base (JBASE/JDBASE) and

character plane (JELANE/JDPLAN) attributes discussed in

Reference 1.

Character justification will begin with the "lower-

left-hand" corner of the string corresponding to the current

57

I

position (CP) on the screen. Any changes to Justification

can be made by changing the (JJUST/JDJUST) attributes.

all text primitive subroutine calls return CP to its

initial Fosition when the call completes.

Seatine! characters are allowed within the STRING
parameter to specify different functions. All sentinel

character functions are prefaced by the start command (open
bracket, '(') and terminated by the end command (closed
bracket, ']'). The sentinel character functions are:

[BSUP] -- Begin superscript

(ESUP) -- End superscript

(BSUB] -- Begin subscript

(ESUB) -- End subscript

(BUC] -- Begin uppercase

[EUC] -- End uppercase

(BIC] -- Begin lowercase

[EC] -- End lowercase

(BUND] -- Begin underline

[EUNE] -- End underline

(FONT=n] -- Change to font number In'

Figure 4.1 shows examples of sentinels and their
resulting outputs.

D. CHARACTER SIZE (JSIZE/JDSIZE)

1. Pescrip.ion

JSIZE/JDSIZE are the subroutines that set the

current/default text primitive character size.

2. Ul

CALL JSIZE(CXSIZE,CYSIZE) (Current)

or
CALL JDSI ZE (DXSI ZE,DYSIZE) (Default)

58

CXSIZE,CYSIZE (Real)

The size of a character within the currently opsn

segment.

DXSIZE,DYSIZE (Real)

The new value for the default size of a character.

When a segment is cpened, character size is reset to

DXSIZE,DISIZE.

CXSIZE/DXSIZE are widths (in the X-axis directicn)
and CYSIZE/DYSIZE are heights (in the Y-axis direction).

They are expressed as world coordinate values.

4 jnitia1_izajicn Def _lt Va4lue

DXSIZE/DYSIZE = 0.02

5. _Discussion

JSIZE/JDSIZE parameters are expressed as world coor-

dinates. Therefore, since JWINDO specifies the world coor-

dinate grid there is a direct relationship between window
and character size. Both dimensions will be defined in

terms of the same units. Polyline and polygon primitives

also use these world coordinate units.

E. CHARACTER SPACING (JGAP/JDGAP)

1. pel pton

JGAP/JDGAP are the subroutines that set the

current/default text spacing (gap) between characters.

2. use

CALL JGAP(CVALUE) (Current)

or
CALL JDGAP(DVALUE) (Default)

59

3. eaamt olintns

CVALU I (Real)

The spacing between characters within the currently

open segment. (CVALUE > -1.0)

DVALUE (Real)

The new value for the default spacing between char-

acters. When a segment is opened, spacing is reset to
DVALUE. (DV&LUE > -1.0)

4. Ii:ializatjon Default Value

DVALUE = 0.0 (Normal spacing)

5. Discussion

The spacing between characters is defined as a

multiple of character width. Therefore, if CVALUE/DVALUE =

1.0 there will be a space between each character box equiva-

lent to the width of a normal character (for example, an

Notice that when CVALUE/DVALUE = 0.0 there is still

some space between characters. This is because each char-

acter is surrounded by a character box that contains ncrmal

aga so that text does not "run together."

Text can be made to partially or completely overlap

by setting CVALUE/DVALUE < -.25. CVALUE/DVALUE = -.25 makes

the characters "touch" each other, and CVALUE/DVALUE = -1.0
superimposes all characters onto a single location.

P. CHIRACTER STRING DIRECTION (JP&TH/JDPATH)

1. escription

JPATH/JDPATH are the subroutines that set the

current/default text primitive character direction (path).

Normal direction is "left-to-right."

60

2. Use

CALL JPATH(CVALUE) (Current)

or

CALL JEEATH(DVALUE) (Default)

3. Parameter Definition

CVALUE (Integer)

The directicn of a character string within the

currently open segment. 'CVALUE=I thru 4)

DVALUE (Integer)

The new default value for character string direc-

tion. When a segment is opened, direction is reset to

DVALUE. (DVALUE=1 thru 4)

4. nqtiaiizaticn Default Value

DVALUE=1 (left-to-right)

S. Discussion

Character strings can be generated in four different

directions using the JPATH/JDPATH subroutines by setting

their parameters to the following values:

I -- left-tc-right (character path right)

2 -- top-to-bottom (path down)

3 -- right-tc-left (character path left)

4-- bottom-to-top (path up)

Values 3 and 4 will result in inverted characters

unless used in conjunction with base and plane manipulation

as discussed in Reference 1. Normal directions can be

generated using values I or 2.
Figure 4.2 is an example of the four possible path

settings.

61

6. CHARACTER STRING JUSTIFICATION (JJUST/JDJUST)

1. Descrip.ion

JJUST/JDJUST are the subroutines that set the

current/default text primitive character string justifica-

tion. The justification point is the starting position of a

character string. It lies "within" the string (for example,

the "lower-left-hand corner," or the "center" of the

string). Figure 4.3 shows examples of string justificaticn.

2. Use

CALL JJUST(CHORIZ,CVERT) (Current)

or
CALL JDJUSI(DHORIZDVERT) (Default)

3. Parameter Def initio n

CHCEIZ/CV ERT (Integer)

The horizontal/vertical justification of a character

string within a currently open segment. (CHORIZ,CVERT=1,2,

or 3)
DHCRIZ/DVERT (Integer)

The new default value for the horizontal/vertical

character string justification. When a segment is opened,

justification is reset to DHORIZ and DVERT.

(DHORIZ,DVERT-1,2, or 3)

DHORIZ,DVERT=1 (bottom left)

5. Discusion

Character string justification values are defined as

follows:

CHORIZ/DBORIZ CVERT/DVERT

I -- left 1 -- bottom

2 -- center 2 -- center

62

3 -- right 3 -- top
The justification point refers to the position indi-

cation "dot" shown cn the examples in Figure 4.3. When a
text primitive string is created, this point is overlaid

(mapped) onto current screen position (CP), thus providing

for nine different crientaticns.

H. CHIRICTER ST LE (JFONT/JDFONT)

JFONT/JDFONT are the subroutines that set the

current/default character style (font).

2. Use

CALL JPONT(CVALUE) (Current)

or
CALL JDFONT(D VALUE) (Default)

3. alameter Definition

CVALUE (Integer)

The style type of a character string within a
currently open segment. (1<=CVALUE<=12)

DVALUE (Integer)

The new default value for character style type.

When a segment is opened, style type is reset to DVALUE.
(1<=DVALUE<=12)

4. Initialization 'Default Vajue

DVALUE=l (simplex block)

5. i2ncusslo

There are six different character style fonts avail-

able. Each can be Senerated in block or italics (right-

slanted) orientation. The following CVALUE/DVALUE values

are used to specify style:

63

1 -- simplex block 7 -- triplex block

2 -- simplex italics 8 -- triplex italics

3 -- duplex block 9 -- Greek block

£4 -- duplex itali-cs 10 -- Greek italics

5 -- complex block 11 -- script block

6 -- complex italics 12 -- script italics
Figure 4I.4 gives examples of the six basic character

style fonts.

p-I

E-4.

Ln I W

-- 3:~'

U)I

0
7 0 -X M,=

HUP a . i'4

_o t I F q 1 \ 4 1

zI. z =3m~ 0~ r-n t
0 co OC

- 0 I Zn= ~ II - , 1 0V(I rO -I (n'J4
N' en -4 Nl,4 It

65E-

P
U I

T

AI

I P CHARACTER PATH RIGHT
TFEL HTAP RETCARAHC AP

AITI

H I

Figure 4.2 Character String Direction Path Example.

66

100 MN

0 EF
rOP CfNTER L EI IGHE TT

MO F T T

Path Right Path Down

Figure 4.3 Text Justification Examples.

67

Few dI ad S fad? POM d Fe a d 11 PMlI FA 3 FeM Pwd 7 . FO 11
S-0- O MP lleW TWMm G k t4s O-OWN CAW" Trip" 0.j , Sa p i

888888 i

I I t 999 99

$ $< < < < <§ .

AA A A A A

B B B B 63

--- E E E E E
F F F F Z

0000 0 H H H H E)

3 3 3 3 3 3 K K K K K X
4 4 4 4 4 4 L L L L A

5 5 5 5 5 5 M M M M Mt

Figure 4.4 Graphic Precision Text Styles.

68

V. BEUI.RD SUBROUTINSS

A. GENERAL

Figure 1.1 is an example of the minimum set of subrou-

tine calls necessary to run any DI-3000 graphics program.

The program harness is not meant to be an. exhaustive list of

all possible control commands, but it does provide for all

basic initialization, primitive creation, primitive visi-

bility, and termination requirements.

The remainder of this chapter will describe the commands

listed and alternative subroutine calls if they apply. Some

terminclogy already defined will be used.

B. INITIALIZATION (JEEGIN)

1. Description

JBEGIN is the subroutine call used to begin the

DI-3000 graphics portion of an application program. It sets

all default parameter and attribute values to their initial-

ization state.

2. Use

CALL JEEGIN (No parametei)

3. Discussion

Any Fortran statements in the application program

may precede or follow the JBEGIN call if they adhere to the

standard, required crder of Fortran statements and lines as

described in Reference 2. But, JBEGIN must be the first

DI-3000 statement. It begins the application program

graphics section.

69

JBEGIN does not specify an output device. The
JFILES, JDINIT, and JDEVON commands are used after JBEGIN to
define, initialize, and select the Ramtek monitor pair to be

used for display.

C. SELECTING AND OPERATING RAMTEK MONITORS

1. Discussion

The war lab has three graphics processors and two

Ramtek mcnitors for each processor. Before trying to use
one of the available units the programmer must verify that

at least one monitor Fair is not already in use. There are

three pairs currently accessible. Figure 1.1 prcvides a

typical monitor configuration. Each monitor can be identi-

fied as belonging to monitor pair 1, 2, or 3 by the label
beneath the screen. If you try to access a pair in use your

program will run-terminate with an error.

A program could be written that would only access a

single mcnitor pair, but this would limit the user. To make
all programs able to use all monitors, the following two

Fortran statements are included in the Figure 1.3 program
harness and must precede the JBEGIN call in any application

program:

TYPE *0 OENTER THE MONITOR NUMBER'

ACCEPT *, MON

Fortran programmers may be unfamiliar with these

statements because they are VAX-11 Fortran extensions to the
Fortran-77 standard. TYPE merely queries the user at the

terminal (interactively during program run) as to which

monitor pair is intended for use. ACCEPT inputs the monitor

number and stores it in an integer variable location named

MON for later use in the JFILES subroutine call.

Both screens of a monitor pair do not need to be

energized unless you wish to display two identical pictures

70

simultaneously. Befcre running your program, insure that

the two Ramtek front panel toggle switches are in the "up"

positions and that tke brightness knob is turned fully coun-

terclockwise. There is a one minute warm-up time required

if the screens were previously deenergized.

D. DEFINING MONITOR UNIT PAIR NUMBER (JFILES)

1. _ s criion

JFILES is the subroutine call that determines which

Ramtek mcnitor pair will display the graphics image.

2. Ule

CALL JFILES(CODE,1,MONNUM)

3. jarame~ter Definition

CODE (Integer)

A ccde that indicates which DI-3000 internal file

will be cverridden. Normally CODE=3. If graphics input is

to be done using the input tablets, CODE=4 is required.

I (Integer number one)

Required because of current file specification as
implemented on the VAX operating system in the War Lab.

SONNUM (Integer)

The monitor pair number to be used to display the

application program graphics picture. (MONNUM= 1,2, or 3)

4. Discussion

HCNNUM can be any variable name used by the applica-

tion program to indicate monitor pair number. If the

program harness of Figure 1.3 is used, then MONNUM must be

the variable named MCN:
CALL JFILES(3,1,MON)

71

If a user knows that a certain screen pair will

always be used, an integer value of 1, 2, or 3 can instead

be used as MONNUM value. For example, if screen pair 2 were

always tc be used the following statement would apply:

CALL JFILES (3, 1,2)

I. INITIALIZATION &ED SELECTION (JDINIT/JDEVON)

1. Descri2ion

JDINIT and Jf1EVON are the subroutine calls that

initialize and then select, respectively, display devices.

They must be included in the mandatory sequence of DI-3000

subroutine calls.

2. Use

CALL JrINIT(MON) (Must be in this order)

CALL JDEVON(MON)

3. jajamet r Refinition

MON (Integer)

The current version of DI-3000 assigns device number
one to all Rautek display monitors. This number must be

used as the parameter value of both subroutine calls

(MON= 1) •

4. Dicsston

JDINIT(MON) and JDEVON(BON) must precede any default

attribute declaration subroutines or any segments.

P. SECIPYING COLOR

1. Dils on

A color must be specified if any polylines or text

are to be visible. Either the JDCOLR subroutine prior to

72

opening the first segment, or the JCOLOR subroutine within

each segment can be used.

If polygons are to be created, use the polygon color

attributes JPIDEZX/JDPIDX in conjunction with the interior

style attributes JPIWTR/JDPINT.

In general, for the beginning user it is a safe

practice to always specify a polyline default color pricr to

opening the first segment. This is done in the Figure 1.3

program harness example with the JDCOLR(2) subroutine call.

Since color value 2 is used, polylines and text would be

drawn in green.

G. DEFINING COOBDINATE ASPECT RATIO (JVSPAC)

1. iR _sc ion

JISPAC is the subroutine call that defines the

actual Ramtek monitor screen area to be used.

2. Use

CALL JVS PAC (-1.0, 1.0,-.8,.8)

3. Discuss lon

Real number parameters -1.0, 1.0, -.8, and .8 should

be used where indicated if the maximum screen area available

is to be utilized. Ramtek GH859C color monitors have a

defined virtual coordinate display area 1.0 unit wide by

±.8 units high, referenced to an invisible screen center

point at (0.,0.). Cther values would not fully utilize the

available screen surface.
Portions of the screen can be used by varying JVSPAC

parameters. The height-to-width ratio (.8) must be iden-

tical for these parameters and the JWINDO parameters if no

distcrtion is to occur during the "mapping" of world coordi-

nate picture onto virtual coordinate space.

73

Por a further description of JVSPAC, see Reference
1.

H. DEFINING WORLD COORDINATE WINDOW (JWINDO)

1. DPs i_ £on

JUINDO is the subroutine call that defines the world

coordinate system. All text and image points in a program

are referenced to this grid.

2. se

CALL JWINDO(XMIN,XMAX,Y IN,YMAX)

3. .atame ter Definition

XMIN,XHAX (Real)

The minimum and maximum world coordinate boundaries
in the horizontal (X-axis) direction.

YMIN,YMAX (Real)

The minimum and maximum world coordinate boundaries

in the vertical (Y-axis) direction.

4. Discussion

The world cocrdinate system of this tutorial is an

area 16.0 units high by 20.0 units across, chosen arbi-

trarily. The following command specifies this system:
CALL JWINDO(-10.0, 10.0,-8.0,8.0)

Any real values could have been selected, but they
would have to match the .8 height-to-width ratio, specified

by the JVSPAC subroutine call, for no distortion to cccur.

JWINDO can be used to "blow up" or "shrink" images

merely by changing its parameter values. For example, if a
user wants to double the size of an image, then the JWINDO

parameters should be halved. This is analagous to an object

existing in some world system, then finding itself in a

74

world half the previous size. The object's size would seem

to have doubled.
Distortions can also be created by changing height-

to-width ratios to values other than .8.

JVINDO cannot be called while a segment is open.

I. SEGMENT REQUIREMINTS

1. .PiAcussiof

The JROPEN(1) and JRCLOS statements in Figure 1.3
tegin and end a retained program segment. All images must
be created within a segment. For images that can all appear
on the screen at once, the program harness segment state-
ments given will be adequate. Segments, and their visi-

hility, are discussed in detail in Chapter VI.

J. ENDING A GRAPHICS PROGRAM (JEND/END)

1. Description

JEND is the subroutine call that terminates the

DI-3000 graphics portion of an application program.

2. Use

CALL JEND (No parameters)

3. Dicsi

JEND must be the last DI-3000 statement in an appli-

caticn program. Any Fortran statements may precede or
follow JEND if they adhere to the standard required crder of
Fortran statements and lines as discussed in Reference 2.

JEND insures that the Ramtek monitors previously

initialized and selected are de-selected and terminated.
The END command in Figure 1.3 is a standard Fortran

statement, and must be the last statement of any application

program.

75

VI. DISPYING AN IR GE

A. GEUEBL

In addition to defining the shape and position of a

primitive, a user can control when a DI-3000 picture will be
displayed during program run. Also, simple images can be

combined to create ccmplex figures, and any combinaticn of

statements can be grcuped together to form a program segment

that can be made visible or invisible as a unit.

Normal execution of an application program will cause

the DI-3000 graphics image to appear on the selected monitor

pair, but the picture will clear immediately when the job

ends. A descripticn of how to "pause" a program so a

display can be h-ld for extended viewing is included.

This chapter explains how to control these functions,

and discusses some image overlay limitations associated with
the War Lab graphics system as configured.

B. SEGMETS

A §ent defines part of a whole picture of logically

related cbjects (a graphics data structure) . A complete

graphics image normally consists of a sequence of segments.

Each segment is a series of DI-3000 primitive and

current attribute calls. Every statement that creates a

primitive must be contained within a segment. Only default

attribute and initialization subroutines can exist outside

this data structure.

An entire image creation sequence can be ccntained

within a single segment, but multiple segments are often

used to partition a program into more easily understandable

parts. This technique also aids in error diagnosis.

76

There are two segment types: temporar and retained.

Temporary segments are only displayed once. If they are

ever cleared from the screen they cannot be restored.

Retained segments are "named" segments that can be made

visible and invisible as often as desired. In general, the

retained segment offers the programmer more control over the
picture and is the recommended type. A retained segment is

used in the example program harness of Figure 1.3 in Chapter

I.
When any segment is opened, the carrent position (CP) is

set to zero (0.,0.) and all attributes are reset to their

default values.

C. IhAG! OVERLAY LINITATIONS

The War Lab graphics system utilizes certain conventicns

that can be limiting if compound images are desired. For

example, if two or more primitives occupy the same pixel

position on a screen the resultant image color will be a

blend of the individual colors. This problem is not easily

overcome, but sometimes can be corrected as follows. After

drawing the second image over all or part of the first, the

original image is made invisible by using the JVISBL

command. When this is done, only the overlaid portion of
the first image will disappear. A complete display of true

color will result fcr both, but this technique can become
very complicated for multiple images.

A second method involves accessing the Ramtek pixel data

and conducting a bit-plane-erase as described in Reference 1

under Escape Functicns. Trying to "black out" color by

drawing with background color "0" does not work because you

will actually be drawing with "nothing.,

Pclygon interiors are filled with color until they

encounter a border, but this does not have to be the

77

polygon's own border. If another polygon edge is encoun-
tered during the fill of an overlaying polygon, the fill

will often stop. Again, using the JVISBL command to make

the original, overlaid polygon invisible will often correct
this problem because the limiting border will be removed.

When polygons are created, their defining points can

cause their edge lines to intersect if the point sequence is
incorrectly specified. This intersection will actually

create more than one pclygon. When color fill is attempted

it will stop at the first intersection point rather than

completing the intericr color of the whole shape. Defining

the shapes as multiple polygons corrects this problem.

D. CREATING A TEIPORIRY SEGMENT (JOPEN/JCLOSE)

1. Discuson

JOPEN/JCLOSE are the subroutine calls that begin/end

a temporary segment.

2. Use

CALL JOPEN

(sequence of DI-3000 subroutine calls)

CALL JCLOSE

3. PAf-l±

Temporary segments exist only once. Refer to

JROPER/JBCLCS for a discussion of retained segments.
Befer to Section B of this chapter for a description

of segments in general.

78

1. CREATING & RETAINED SEGMENT (JROPEN/JRCLOS)

1. Descrip:t

ROPEN/JRCLOS are the subroutine calls that

begin/end a retained segment.

2. _se

CALL JHOPEN (NAME)

(Sequence of DI-3000 subroutine calls)

CALL JECLOS

3. parameter Definition

NAME (Integer)

The name of the retained segment to be opened.

(1 <NAME_320 00)

4. Discussion

Retained segments can be made visible or invisible

using the JVISBL/JDVSEL subroutine calls.

All retained segments can be cleared from the screen

using the JFRAME and JVISBL subroutine calls together.

Retained segments can be erased from memory using

the JCLEAR subroutine call.

Refer to Section B of this chapter for a description

cf segments in general.

Note -- JRCtCS does not require the name of the

retained segment as a parameter.

F. 31IXG SEGMENTS VISIBLE (JVISBL/JDVISB)

JVISBL/JDVISE are the subroutines that determine the

visibility/default visibility of retained segments.

79

2. Use

CALL JVISEL(NAMEVISFLG) (Immediate)

or

CALL JDVISB(VISFLG) (Default)

3. Patameter Definitions

NAME (Integer)

The name of the retained segment whose visibility

attribute will be changed.

VISFLG (Integer)

An integer value that controls the visibility of
retained segments. (IISFLG=O or 1)

Default value is one (visible).

4. Discussion

The follcwing VISFLG values apply:

0-- Retained segment invisible

1 -- Retained segment visible

JVISBL is used to remove or restore the image of a

retained segment onto the screen.

JDVISB sets the default visibility of all re-ained

segments.

Note -- Neither subroutines can be called within a

segment (JVISBL is not a current subroutine call).

Both JVISBL and JDVISB can make segments visible and

invisible.

G. CLBABING THE SCReeN (JFRAMR)

1. De ripion

JPRAME is the subroutine used to clear the monitor

screen in preparaticn for a new drawing area within a

program.

80

2. Ulse

CALL JFRAME (No parameters)

3. Discussion

JFRAME will cause all temporary segments tc be

removed from the screen. All retained segments will be

removed, then will be redrawn based upon their visibility

attribute as specified by JVISBL/JDVISB.

JCLEAR will not only remove all retained segments

from the screen, but will erase them from memory as well.

After using JCLEAR a retained segment cannot be displayed

again. Reference 1 contains a detailed descripticn of

JCLEAR.

H. PAUSING A PROGRAM (JPAUSE)

1. Descrifption

JPkUSE is the subroutine used to pause a graphics

program during execution.

2. Use

CALL JPAUSE(1)

3. Prameter Definition

1 (Integer number one)

Required by cperating system device assignment.

•4. _iscus sjo

The JPAUSE statement can be inserted anywhere in a

DI-3000 program, after JDINIT and before JEND. It is used

to hold the image on the screen for extended viewing.

A request message will appear on the VT-100/2 screen

during the pause. Depressing the return key on the terminal

will cause the program to continue.

81

Every application program should include at least

one JP&OSE statement after all segments have been created.

If the Frogram is not "paused" during execution, i-t will
imraediazely exit at run-completion and the screen will

clear.

82

VII. CONCLUSION

A. ADDITIONAL CAPABILITIES

This tutorial has only described the basic graphics

features available in the War Lab. A brief discussion of

additional capabilities follows. Detailed explanations can

he found in Reference 1.

Graphics input can be read by using the logical input

functions and the input tablet hardware. The functions

request input from the operator and pass the values to the

calling program. The Chart and Sketch Program, written by

CAPT Tschudy and available to users in the War Lab, makes

extensive use of DI-3000 input subroutines for interactive

query and selective display.

Scaling can be dcne that results in distorted images or
varied image sizes. All previous examples have been two-

dimensicnal (2D) pictures, but the ability to create three-

dimensional (3D) objects exists. The 2D or 3D images can be

rotated thrcughout all possible configurations, and can be

viewed from any translaticn point in space by using

different modeling transformations.

Each error generated in DI-3000 is assigned a "severity

level," and a "threshold" error level can be set that will

either terminate or allow a program to continue. This

selective error processing feature is particularly helpful

during program development and debugging.

System inquiries can be made that pass current values,

default values, modes, and status information back to the

application program. This capability is useful in interac-

tive programs that rely on dynamic parameters.

83

Calling programs can "escape' to the Ramtek hardware

itself for control of device-dependent routines. These

escape functions often complete processes more quickly by

using hardware routines rather than DI-3000 software. The

immediate display of all screen "pixel" data, rather than a

slow software update, is an example of a typical escape

function.

B. HELP FEATURE

The operating system provides users with a DI-3000

"help" feature. Printouts that discuss common graphics

problems, and solutions to typical difficulties, are

displayed on the terminal screens. To access the "help"

library, after log-in type:

HELP D13000

A menu will appear with topic subsections that can then

be specified by typing the given topic name.

In general, "help" listings are designed to aid mcre

experienced users.

C. SAPIE PROGRIAS

Sample programs exist that can be used to compare

displayed images to the Fortran listings that create them.

Users can output the listings to their terminal screens or

to the printer in the War Lab machine room. The graphics

images will appear cn a monitor pair that is selected in

response to an interactive query during program run.

To run a demonstration program, after normal user log-in

type the following ccmmand:

RUNDEMC (Sample Program Number)

For example, if sample program number 2 is to be run and

displayed on a monitor, the following complete command is

typed and entered with a <CR> (carriage return):

R11NDEMO 2

84

A request fcr mcnitor number will then appear on the

terminal screen. After typing the desired monitor number

and entering it, tte demonstration program will run and

display the image. The Ramtek monitor you choose must be

energized and cannot already be in use.

There are several ways to exit, or end the programs.

Most require a <CR> response to a pause message, but demon-

stration programs 21-25 contain FORTRAN PAUSE commands that

require the following entry:

C <CR>

All programs can be terminated at any time by typing

<CTRL> and Y simultaneously.

To cause the Fortran program listing to appear on the

terminal screen, type the following:

TYPEDENO (Sample Program Number)
To stop the screen frcm 'scrolling" past the program portion

you wish to view, depress the <NO SCROLL> key.

To print a hard copy of the Fortran listing, type the

following:

PRINTDEMO (Sample Program Number)
Some of the sample programs correspond to figures in

this tutorial, and are indicated as such in the fcllowing

sample program index:

DENO NUMBER DESCRIPTION

1 Absolute square

2 4 Relative squares
3 Successful polygon overlay

4 Absolute broken line (Figure 2.1)

5 Relative broken line (Figure 2.1)

6 Arc line

7 Distorted arc (center off screen)

8 Pclygon (Figure 2.2)

9 Rectangle

10 Filled circle

11 Circles (Figure 2.3)

85

12 Circle section (Figure 2.5)

13 Text, default attributes

14 Text, large letters

15 Text and polygon, normal size

16 Text, different font

17 Text, vertical path

18 Text, wide gap

19 Text, overlap gap

20 Text, base and plane change

21 Text, italics

22 Sine waves plot

23 Text, base line

24 Text, transformations

25 Interactive Input

1. Suqqested Thesis Toics

A student with a desire to work with the graphics

system could contribute to War Lab system capability.

Polygon overlay and 3D transformation features could be more

thoroughly investigated.

An extensive color table needs to be created. Scme

type of interactive method for users to select desired

colors cculd be developed.

This tutorial could be made into an interactive

program, and further documentation of the advertised DI-3000
capabilities that are not applicable to the War Lab system

could be generated.

86

LIST 01 REFERENCES

1. DI-3000 User's tGuide, Precision visuals, Inc.,
B5~I~Uf. C9 ptN1 1982.

2. VAI-11 FORTRAN Lanquajge Reference Manual, Digital
i~in~~p I 5aynI, 71ET1nW

87

r

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron tatign
Alexandria, Virginia 22314

2. Superintendent 2
Naval Postgraduate School
ATTN: Code 0142
Monterey, Calif crnia 93943

3. Prof. M. K. Sovereign, Code 74 1
Chairxan, C3 Academic Group
Naval Postgraduate School
Monterey, Califcrnia 93943

4. CDR G. R. Porter, Code 741 10
Director, C2 War Lab
Naval Postqraduate School
Monterey, Califcrnia 93943

5. Dr. A. M. Zted, Code 74zi 5
Tecnical Director, C2 War Lab
Naval Postgraduate School
Monterey, Califcrnia 93943

6. Joint C3 Curricular Office, Code 39 1
Naval Postgraduate School
Monterey, California 93943

7. MAJ H. W. Yellen, qSA 2
Center for War Gaming
U .S. Army War Ccllege
Carlisle Barracks, Pennsylvania 17013

8. Naval Ocean Systems Center 1
ATTN: Code 8302
271 Catalina Blvd.
San Diego, California 95152

9. LT Bonald H. Elmlinger, USN 3
230 Betz Road
Columbus, Ohio 43207

88

k

